
PO
TO

MAC INSTITUTE

F
O

R POLICY STUDIE
S

B

G

POTOMAC INSTITUTE FOR POLICY STUDIES
901 N. Stuart St. Suite 1200
Arlington, VA 22203

INTELLIGENCE 
COMPLEXITY
Michael Swetnam
Robert Hummel
Charles Mueller
Paul Syers



Copyright © 2016
Potomac Institute for Policy Studies

901 N. Stuart St, Suite 1200
Arlington, VA, 22203

www.potomacinstitute.org
Telephone: 703.525.0770; Fax: 703.525.0299

Email: webmaster@potomacinstitute.org

PO
TO

MAC INSTITUTE

F
O

R POLICY STUDIE
S

B

G Potomac Institute Press

NOTICE: This report is a product of the Potomac Institute for Policy Studies. 
The conclusions of this study are our own and do not necessarily represent 
the views of the sponsors or participants. 

The Potomac Institute for Policy Studies is an independent, 501(c)(3), 
not-for-profit public policy research institute. The Institute identifies and 
aggressively shepherds discussion on key science, technology, and national 
security issues facing our society. From these discussions and forums, we 
develop meaningful policy options and ensure their implementation at the 
intersection of business and government. 

Cover image credits:  
Thinker image: Alex Taliesen.  
Fractal realms series images: www.shutterstock.com.



TABLE OF CONTENTS
 
ACKNOWLEDGEMENT 	 4

 
PART 1	 5
DIKW THEORY OF INTELLIGENCE COMPLEXITY

DIKW Explained  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   6
Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                   7
Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                               8
Knowledge  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                              10
Wisdom .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                11
DIKW TEST .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 14

Systems and Methods for Determining Machine Intelligence
For a system X that purports to operate at the D Level
For a system X that purports to operate at the I Level
For a system X that purports to operate at the K Level
For a system X that purports to operate at the W Level

The Utility of A DIKW Test  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      18
An Example of DIKW in Action  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 19

From D-W: Human Intelligence
From D-W: Humans & Climate
From D-I: Machine Intelligence

 
PART 2	 25
THEORY OF EMOTION

The Driver of Intelligence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      26
I = E x C .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                                26
I = E x C: The Human System .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 28
CONCEPT: Achieving Machine Emotion  .  .  .  .  .  .  .  .  .  .  .  .  .              30
Consciousness, Intelligence and Emotion .   .   .   .   .   .   .   .   .   .   .   .   . 32



© 2016, Potomac Institute for Policy Studies

acknowledgement 

ACKNOWLEDGEMENT 
The theory of DIKW as a hierarchy of intelligence complexity and the 
concept that I = E x C are concepts of Michael Swetnam that were vastly 
improved and corrected by the assembled quartet. DIKW as a measurement 
of intelligence was formalized by Robert Hummel and has been submitted 
for a US Patent. The writing and final product are the works of Charles 
Mueller and Paul Syers.



Intelligence Complexity

PART 1

DIKW THEORY OF INTELLIGENCE COMPLEXITY



6

© 2016, Potomac Institute for Policy Studies

PART 1

DIKW Explained

Today the world is connected like never before. Our actions, our locations 
and even our thoughts are aggregated and stored into large data sets that 
represent all we do in the digital environment. Companies that attempt to 
find patterns in these data sets are said to be working in the “Big Data” 
market. The notion of “Big Data” is about finding patterns in large data 
sets that can be abstracted into models that can lead to a more complete 
understanding of why such patterns exist. Companies care about this 
because it can be used to predict risk, human behavior, and even things 
like health. While humans are able to create these abstractions rather 
intuitively through reflection on their experiences in life, the companies 
interested in doing this use computers to find these trends based on our 
digital activity. Being able to identify patterns and build models to explain 
those patterns is, in a nutshell, how we view the idea of intelligence. This is 
where the notion of DIKW (Data, Information, Knowledge, Wisdom) finds its 
home because it can help provide a framework to understand intelligence, 
regardless of source, in terms of distinct levels of complex thinking (i.e., 
intelligence complexity).

The notion of DIKW more or less began when Russell Ackoff, a systems 
theorist, famously drew a distinction between data, information, 
knowledge, and wisdom, as a hierarchy of levels of abstraction of data. 
When Ackoff described the DIKW hierarchy in 1979, he used very general 
language to define the various components of the hierarchy. We hope 
that our descriptions sharpen these notions, although we admit that they 
may diverge from the original intention. In any case, for our purposes of 
attempting to describe the complexity of intelligence, something that 
could be used to motivate the development of higher order machine 
intelligence, as well as devising tests to know when intelligence at higher 
complexity levels has been achieved, we will need very precise definitions 
that include mathematical formulations. Accordingly, what follows is our 
attempt at a technical formulation based on mathematical frameworks. 
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These are not formulas, but rather frameworks into which particular 
instances of DIKW could fit.

For simplicity, we discuss intelligence as a generic system, almost in 
a thermodynamic sense. The generic intelligent system is capable of 
measuring signals from its surroundings, storing the signals as data, 
processing them, and generating some output in response to them. These 
output levels involve larger and larger amounts of abstraction from the direct 
sensory inputs from a system. The increasing levels correspond to an ability 
to express representations of the system using smaller and more complex 
methods, indicating higher levels of understanding. Instead of arbitrarily 
naming the levels, we follow Ackoff’s original formulation and use the terms 
“information,” “knowledge,” and “wisdom,” and the term “data” as the 
foundation. Thus we begin with data.1

Data

Data level intelligence complexity provides the most basic and least 
dynamic understanding about a system, by simply recording and storing, 
and recalling sensory inputs from the system.

In the general sense, data are just the signals coming into a system that 
can be detected, stored and processed. Abstractly, data is a process 
that results in a set of numbers or values that are the measurements or 
recordings of sensory input. One can think of it as a collection of bits, 
numbers, or recorded “things” that have associations to their source, 
which is the surrounding system. It is this evidence, whether observed or 
measured, that forms the building blocks of the DIKW structure. Again, 
by a system, we mean anything that is reasonably independent of other 
things in terms of functionality and interface. It can be a simple closed 
system that has a few inputs and outputs, or it can refer to something as 
complex as a solar system.

1.	 Russell L. Ackoff, “From Data to Wisdom,” Journal of Applied Systems Analysis 16 
(1989): 3-9.
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Thus, data is a process that records details of a system and outputs 
measurements. Mathematicians talk about a “representation” of the 
system, although the representation may describe only a tiny part of the 
entire system, and the measured values may be approximate values. 
The realization of the measurements can include identifiers such as a 
time stamp.

Data is not necessarily “truth.” For example, temperature readings of a 
system might provide measurements that are noisy and thus estimates 
of a “true temperature”; they constitute the fact that the data given by 
the sensor system (the thermometer) is recorded at a particular point in 
time and subject to particular conditions. When digitized, the data can be 
stored using bits, together with information about the time and source, and 
potentially additional information about error brackets, bounds, accuracy, 
and other parameters.

Data can also be text, or descriptions, in an unstructured format. Often, the 
collection of data is not particularly well organized. However, one of the 
main uses of computers over the past few decades along with the transition 
from analog to digital data has been an ability to automatically organize 
data in ways that are more useful for subsequent analysis.

Based on this definition of data, it should more clearly follow why we 
interpret the complexity of data level intelligence as being limited to the 
direct, basic operations of recording, storing, and accessing individual 
pieces of data.

Information

Information results from the application of a process to a dataset (or 
multiple datasets), which establishes a relationship among various pieces 
data, such as a correlation or average. Information is therefore derived 
from data. It is not based on direct measurements, but rather, produces 
new understanding based on relationships among data elements. It adds 
new meaning.
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In a mathematical sense, such relationships might be provided by a 
regression of numerical values, or a retrieval of a record based on specific 
criteria, or a statistical database operation that combines more than 
one datum. For text data, information might be a summary or synopsis 
developed from the data, or an explanation that comes from combining 
text data with other data or other information. Often information comes 
from finding relationships between different combined data sets.

Information is created, since a body of data has to be absorbed. 
Information is about patterns/trends in a dataset, and not about a single 
piece of data. Thus, information describes constraints on the data, at 
least in an approximate sense. As a result, information includes a certain 
level of predictive power, gained from understanding data. Whereas data 
has no interpretative power, and hence cannot be said to contain any 
intelligence, information begins the process of moving up an intelligence 
hierarchy, by virtue of examining a body of data in the context of a 
question or other data.

Mathematically, information involves functions applied to a dataset. The 
information is the collection of functions together with the set of data points, 
or output values. For example, the average value of the data set is the 
result of a function that evaluates the average. Both pieces (the averaging 
function and the data set being averaged) provide less understanding 
of the system than the information of the average of the data set. Other 
functions might perform a linear regression and provide the parameters of 
that regression; another function might describe the data as following an 
approximate exponential growth pattern. It is the functional that codifies the 
information, which describes the trends in the data, or a specific operation 
applied to the data together with the resultant value.

Information retrieval, for example, happens based on looking at the entire 
database, together with the resultant extracted results. Most importantly, 
however, information is at a higher level of complexity than data, and 
can be distinguished by the fact that it specifies constraints, patterns, or 
statistics about data.
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Knowledge

Knowledge increases the predictive power of information in an essential way. 
Knowledge involves the formulation of a model, which extrapolates beyond 
the experiences in the observed data, by providing a causal explanation of 
the data. The data provides the observables (i.e., measurements) taken 
from the system, but the model of the system attempts to explain how 
the system works, and thus should be consistent with the data, but also 
extrapolate from it. Accordingly, it predicts what the data might look like in 
other kinds of situations.

Knowledge is distinct from information in that the model of understanding 
of the system can hypothesize causation and underlying structure to 
explain the behavior. The model is more complex than a simple functional 
relationship. It relates a larger number of variables. A linear regression of 
data, while a primitive model that includes a few parameters, does not 
explain causation at any level, since the relationship between the data 
elements is correlative rather than causative. There are many examples of 
correlation that have nothing to do with causation.2 Correlation provides 
a global structure, but not an underlying constituent structure. Models 
provide an understanding of underlying structures and the ability to predict 
data that have never been experienced.

As discussed previously, the world of “Big Data” is focused on developing 
machines (i.e. computers) that can obtain more complex levels of 
intelligence. The key to achieving this is a machine’s ability to create models. 
Accordingly, we should consider the constituent components of a model. 
When we speak of models, we generally mean something that explains 
how inputs, or the state of the system, are related to the predicted outputs 
or progression of the system. Further, a model ideally predicts the behavior 
of the system in cases that extrapolate from observed data, or observed 

2.	 Lee Falin, “The Truth (and Lies) of Correlation vs. Causation,” Scientific American, 
last modified October 2, 2013, http://www.scientificamerican.com/article/correlation-
vs-causation.
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experience. In other words, we speak of models that go beyond being a 
set of correlations to identify causation. A model is often the hypothesis in 
the use of the scientific method, and is validated through experimentation 
that verifies the predictions outside of the range of existing experience.

Models must be useful for predictions, particularly beyond observed 
phenomena. But models are often refined as more data becomes available 
and experiments show discrepancies, however minor, from the existing 
model. While we tend to want to think of a successful model as being 
“truth,” it is in fact an approximation, up until the time that it is refined 
so as to provide a better approximation. For our purposes, however, a 
successful model is useful. It provides predictions that can be used to 
understand why things behave the way they do, and to predict how things 
might behave in other circumstances. To operate at the knowledge level, 
a model needs to be useful and it needs to be able to iteratively change 
when it accumulates new data.

Knowledge in the end is an abstraction of the patterns and trends contained 
within information. It is the bigger idea contained within several different 
sources of information. This bigger idea helps explain why the information 
exists as it does, it provides causation, a model to help explain how the 
data is organized into the patterns and trends observed.

Wisdom

Beyond knowledge there is wisdom on the hierarchy. Wisdom is an 
abstraction of knowledge, which is itself an abstraction of information, 
which is itself an abstraction of data. In this sense, it is like a third degree 
abstraction of data. We posit that wisdom necessarily involves a functional 
model whose elements are bodies of knowledge, which is to say a model 
of models. The first-order models are the elements of knowledge; the 
model that assembles those models is a second-order, or meta-model, 
with far greater predictive power. As with knowledge, a meta-model should 
be able to extrapolate beyond the previously observed experiences. 
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However, meta-models allow for “what-if” experiments, and thus wisdom 
goes beyond extrapolation. Wisdom comes from sufficiently broad bodies 
of knowledge such that we might be able to postulate changes. Those 
changes might suggest we could influence or modify the generation of 
data or information through manipulation of a manageable set of input 
parameters and through wisdom, understand the likely impact.

Wisdom involves one or more meta-models, and invokes multiple 
knowledge-based models in order to provide sophisticated simulations 
and explanations of behavior. It is distinguished from knowledge by the 
use of multiple models, and further extrapolation to events that are not 
included in the information base. That is, the meta-model may involve 
positing a sequence of events and predicting the resulting data outputs. 
Importantly, wisdom involves a notion that the observer can control the 
outcome by manipulating events. Wisdom is the most dynamic of the 
levels of intelligence complexity. It cannot only adapt multiple models, 
but it can create entirely new ones for testing and incorporation into the 
meta-model.

In wisdom, the causation models are bound to the meta-model at 
prediction time, which is to say that if one of the models changes, then 
the result of the meta-model changes. That may seem obvious, but the 
important distinction is the difference between a meta-model and a model. 
If the meta-model is compiled to become a large model, then it is simply 
another model and can be considered additional knowledge. That new 
model is independent of the constituent models: They have been bound 
to the meta-model at the compilation time, and not at the “run time,” to 
use a computer science expression. The meta-model, which is wisdom, 
uses knowledge models in such a way that if the knowledge models are 
dynamically updated or envisioned as different models, then the meta-
model automatically uses the updated model. In this way, the meta-model 
can consider what we might term as “alternate realities.”
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For a machine, in order for wisdom to be used to influence outcomes, there 
is a separation of the input variables of the final program into variables that 
are observed and variables that can be controlled. Further, the variables 
might have a time sequencing requirement, or particular time differentials 
that are specified and intended. In wisdom, we use the prediction capabilities 
to seek goals by manipulating the controllable variables in order to obtain 
desirable predicted results.

As described above, wisdom is built upon multiple models of knowledge. 
However, because wisdom uses knowledge models at the time wisdom is 
invoked, those knowledge models are fungible. In this way, wisdom can 
play “what if” games. Wisdom can instantiate knowledge models that are 
not real, or not based on gathered information. Instead, wisdom can rely on 
hypothesized knowledge models; to “dream” (if you will) about alternative 
possibilities, even if the knowledge is not real. Wisdom allows us to develop 
theories about how things might work in an alternate universe, a different 
planet, or a different time in history.

Thus, wisdom allows for creativity in the application of the meta-model. 
Creativity is not present in information. In knowledge, we have more 
creativity in hypothesizing causality, but that creativity is limited in scope 
and by the need to validate the causal models. Wisdom is inherently 
creative, it is imaginative since the knowledge that is invoked as inputs 
need not be reality.

In wisdom, the first-order models are the elements of knowledge; the 
meta-model that assembles those models is a second-order, with greater 
predictive power and an ability to speculate on alternative first-order 
models. We can potentially consider meta-meta models, or third order (or 
higher) models that are built on top of lower-order models. In this way, 
wisdom itself can have multiple discrete levels of intelligence defined by 
their complexity. For this exposition, we will lump all such levels into a 
single category of “wisdom.”
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DIKW TEST

How will we know when another system has achieved intelligence at the 
knowledge or wisdom complexity levels when we have it? As we have 
asserted, the process of achieving that level of intelligence complexity 
should be transferable to multiple application domains.

For specific applications we can match the alleged system with intelligence 
against the capabilities that signify information, knowledge, or wisdom 
level intelligence complexity. However, there may be systems with other 
application domains, or a mixture of application domains that will have 
capabilities matching none of the patterns we have suggested for systems 
with intelligence within a specific domain. Accordingly, we consider how 
to determine the level of intelligence complexity of a proposed system 
against a DIKW hierarchy.

Within each level, the level of performance can be assessed through its 
predictive power. We have already noted that knowledge is subject to 
the scientific method in validating hypotheses. That is, a model that is 
generated by knowledge can be assessed through tests that validate its 
predictive capabilities.

Measuring the performance of wisdom is complicated. It is about measuring 
creativity. Wisdom comes from succeeding with predictions. Ultimately it 
will be the sophistication of the meta-model, and the utility of that model 
for influencing future data that provides the true measure of wisdom.

Systems and Methods for Determining Machine Intelligence3

We propose a 20-questions format for determining the intelligence 
complexity level of a system, whether it is at a D, I, K, or W Level. This 
test does not provide for a measure within the level, but just the highest 
level of attainment for a system capable of intelligence. Further, we 

3.	 Systems and Methods for Determining Machine Intelligence is being patented and 
has a provisional patent number 15/198,942.
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can insist that the system pass certain questions at a given level, and 
that for other questions, one or more of a group must be satisfied. By 
assigning points to each question, and then scoring the system at each 
given level, we can decide if the system has truly attained that level 
of intelligence complexity, while still allowing for some ambiguity and 
“partial credit” in some of the questions.

An intelligent system can operate at a data level, an information level, 
a knowledge level, or a wisdom level (or none of the above), which we 
call D, I, K, and W Levels. If it operates at an I Level, then it also either 
operates at or uses a system that operates at the D Level. Similarly, a 
K Level system is also, or uses, an I and D Level system, and a W Level 
system is also, or uses, K, I, and D Level systems.

For a system X that purports to operate at the D Level

1.	 Does X receive inputs that are measurements (data)? (20 points)

2.	 Does X insert those measurements into a store of data? (20 points)

3.	 Does that store of data have permanence, such that it can be 
appended or reviewed later? (20 points)

4.	 Does X permit subsequent use of that store of data? (20 points)

5.	 Can database operations be executed on that store of data? (20 
points)

If a system scores 90 or higher (allowing for some ambiguity in the 
scores for answers to questions), then X is at least a D Level system.

For a system X that purports to operate at the I Level

1.	 Does X permit queries that request information? (25 points)

2.	 Does X access multiple elements of a data store in order to answer 
the query? (25 points)

3.	 Does X find trends in the data and output information about those 
trends? (10 points)

4.	 Does X find statistics concerning the data and use those statistics to 
provide information? (10 points)
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5.	 Does X correlate data across the data store, or find correlations 
among the elements in the data store? (10 points)

6.	 Can X predict data that would be measured for a system that 
interpolates between states of the system for which data has been 
collected? (10 points)

7.	 Does X combine data from more than one database? (10 points)

If X scores greater than 80, then it is at least an I Level system.

For a system X that purports to operate at the K Level

1.	 Does X ingest or build information about a system? (20 points)

2.	 Does X build a model of that system, such that the model depends 
on the information that X receives? (20 pints)

3.	 Does the model include a model of causality that explains how the 
system works or evolves in response to its inputs? (10 points)

4.	 Can the model provide useful predictions of information about the 
system that it models? (10 points)

5.	 Does the model include a set of values that corresponds to a notion 
of the state of the system that is being modeled? (10 points)

6.	 Does the model explain most of the information that is provided 
about the system? (10 points)

7.	 Does the model permit the prediction of information that 
extrapolates from the observed behavior of the system on which the 
input information was based? (10 points)

8.	 Does the model provide information about the structure of the 
system, including elements that cannot be directly observed and 
are thus not part of the input information? (5 points)

9.	 Can X build models about different systems, based on input 
information about each such system? (5 points)

If X scores greater than 80, then it is at least a K Level system.
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For a system X that purports to operate at the W Level

1.	 Does X ingest multiple models that represent a compound system, 
where each one models either all or part of the system (i.e., a 
subsystem)? (20 points)

2.	 Does X build a model (a meta-model) of a system that varies if any 
of the ingested models vary? (20 points)

3.	 Can X change one or more of the ingested models, to thereby 
change the output meta-model (in a what-if experiment)? (10 points)

4.	 Does X use the meta-model to explore possible states of the 
modeled system, under various hypothetical circumstances (states)? 
(10 points)

5.	 Does X use the meta-model to explore possible states of the 
modeled system by varying ingested models? (10 points)

6.	 Does X use the meta-model to explore possible states and attempt 
to maximize a metric applied to the information provided by the 
meta-model? (10 points)

7.	 Does X provide information about how the system might be changed 
so as to provide different (and better) states, according to some 
metric? (10 points)

8.	 If so, is that information actionable, in that controllable parameters 
of the system could be changed so as to conform to the different 
and better state of the system, as predicted by the meta-model? (10 
points)

If X scores greater than 80, then it is a W Level system.

We have proposed that there are discrete complexity levels of 
intelligence. However, within a given level, it is possible (indeed, 
probable) that there are measurable degrees (or a continuum of degrees) 
of intelligence complexity at that level. It is not likely that tests exist 
to measure the degree of intelligence complexity at the information, 
knowledge, or wisdom level, although it is possible that there are 
surrogate approaches.
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The Utility of A DIKW Test

The test for intelligence complexity, such as the scoring test in the previous 
section, yields a discrete measure of the level of complexity at which an 
intelligent system can process. This will, for example, enable developers of 
machine intelligence to assess the degree of success at climbing the DIKW 
hierarchy, and afford researchers of other forms of intelligence a similar tool.

Specifically for those focused on creating a machine with higher levels 
of intelligence complexity, this tool provides a different measure of 
success – not one focused on the monetary value of the capability of an 
algorithm or machine in the marketplace. For example, Google is able to 
sell advertisements based on its ability to collect information and use that 
information to the benefit of their clients. We have seen that monetary 
gain and many other measures of machine utility tend to argue for better 
information level machines.

But from the standpoint of research, we aspire toward higher goals that better 
explain nature. Companies that develop and market services that provide 
machine intelligence will have greater marketability if they can provably 
claim that their machine has knowledge level intelligence complexity, 
whereas competitors are at information level intelligence complexity. 
Researchers who attempt to understand if other species on Earth (or 
beyond) are capable of human-like intelligence can use this framework as 
a guide in the quest for a true universal theory of intelligence. By defining 
the difference between levels of intelligence complexity for any system, we 
set aim points for the development and discovery of successively higher 
complexity levels of intelligent systems.

The test described in the previous section seeks performance that can 
reason about causality and provide guidance to influence outcomes, with 
greater predictive fidelity. In addition to providing greater functionality, this 
aim point will help us understand the nature of intelligence, as opposed to 
using tricks to mimic intelligence.
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On a final point, in the realm of machine intelligence, an ability to provably 
attain wisdom level intelligence will offer far greater capabilities. Beyond 
the bragging rights, knowledge and wisdom level abilities would be able to 
achieve better predictions, greater marketability, and indeed give the user 
the ability to generate new knowledge, or to use higher levels of wisdom.

Furthermore, it is likely that this test can be automated. Modern compiler 
technology can be used to examine the code of a machine, and scripts can 
be used to execute sample runs. At issue would be whether the machine 
accesses the database in ways that mix data from multiple sources, whether 
the machine creates predictive models with a state space that extrapolates 
from the information in the database, and whether the machine is able to 
hypothesize novel knowledge bases and thus consider ways to influence 
outcomes. While the test provides opportunities for studying and 
understanding the complexity of intelligence writ large, its most direct 
and immediate application clearly seems to be directed towards the drive 
for machines with higher levels of intelligence.

An Example of DIKW in Action

With the different complexity levels of data, information, knowledge 
and wisdom better defined, let us look at two examples to illustrate the 
different types of intelligence complexity in operation. First we will look 
at how a human DIKW system operates and then compare this to current 
capabilities of a machine DIKW system (i.e., computer).

From D-W: Human Intelligence

Humans are the only observable intelligent system known to be capable 
to wisdom level thinking. As such, any descriptions we have about an 
intelligent system that can perform at all levels of the DIKW hierarchy are 
limited to a discussion of humans.
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Humans are born with the potential to develop wisdom, but they are not 
born with wisdom. Humans develop wisdom only over time and there is 
nothing guaranteed they will ever actually obtain it. The path to obtain 
wisdom begins before a child is even born. As the body and mind are 
developing, data is being delivered into a young infant’s brain through all 
of its newly developed measuring tools, its senses. At this point, a child is 
only capable of data level thinking. It has no ability to yet make sense of all 
the different signals coming into its brain.

During the first years of a child’s life, the brain begins to notice trends and 
patterns within its experiences. It learns to speak by recognizing how the 
sounds it hears match with the facial expressions it sees and the sensations 
it feels with its own ability to create such sounds. It forms these patterns by 
storing its experiences in “memory” and “recalling” them at different times 
to compare them to existing experiences. A child at this point becomes 
capable of intelligence at a complexity level of information. It can mimic 
and engage in meaningful ways with its environment, but the child doesn’t 
really understand why anything is happening around it or within it. It has 
no knowledge.

Farther down the line we begin to see the emergence of a human intelligent 
systems pursuit of knowledge. It begins with questions of “Why?” Once 
a child begins to question the patterns and trends it recognizes and 
remembers, it begins to go through the iterative process of building 
models to explain all the data and information it observes. The biggest 
problem human intelligent systems have once they begin asking why is not 
having at least some answer to explain things. The answer doesn’t have to 
be right, it just has to be useful and at this stage in the game, any answer 
is better than no answer. As such, the child’s mind goes from thinking the 
Tooth Fairy, Easter Bunny and Santa Clause sneak into their house in the 
middle of the night to deliver gifts to realizing the presents are all part 
of a human tradition based on letting the ones we love know we care. 
Through schooling and their own experiences, driven by emotion that fuels 
their curiosities and imagination, humans develop a vast array of models to 
explain the world around them.
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With discipline and a commitment to practicing a structured approach 
to the pursuit of knowledge, a human system can begin to connect the 
models it has to explain all the things around it. It begins to understand 
the complexity of human nature, the laws of nature, and how it is all 
connected. They develop a real model of models and that is what we 
call wisdom. The domain of wisdom might only be applicable to certain 
experiences, like love, or certain disciplines, like physics, but there can be 
even greater levels of wisdom that begin to understand how things like 
love and physics are related.

It is through the iterative process of gathering data (experiences), 
identifying the patterns within it (information), creating models to explain 
it (knowledge), and creating even greater models to validate and explain 
the existence of these models (wisdom) that the human intelligence system 
operates; it is a process of creating higher level abstractions. Many human 
systems never achieve wisdom, and many of them develop knowledge level 
models that do not factually explain the world around them, but are useful 
to their way of life nonetheless. The human intelligence system reminds 
us that just because one has the potential to develop wisdom, it does not 
mean they actually have and practice wisdom. The DIKW test described in 
this report measures this potential, not its application.

From D-W: Humans & Climate

The fact that humans can understand and model the climate is an example 
of their potential to achieve wisdom level intelligence. The drive to 
understand the climate was likely one of the first real pressures on humans 
to evolve a greater intelligence. The ability to understand and predict how 
the weather might change could literally at times mean the difference 
between life and death.

It all starts with collecting data. Humans can collect data using instruments 
like thermometers, barometers, anemometers, hygrometer, and rain 
gauges. By collecting a lot of data over time about how a particular 
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region on this planet is changing with respect to things like temperature, 
humidity, and rainfall, humans can process this data into information. A 
human intelligent system can collect a region’s data throughout the course 
of a year and learn things like average temperature and rainfall, patterns 
in pressure changes, etc. for that region. Collecting it long enough even 
allows for the understanding of long-term patterns in how these data 
measurements change.

With this information, human intelligence can anticipate things like the 
ranges of temperatures to expect for a given time of the year. They can 
plan for certain times of the year where there is more rain and other times 
when it is more dry. They can prepare for the times of the year where the 
storms are the strongest or the winters the coldest. This ability to create a 
predicative capability from this information is the jump from information to 
knowledge. It requires an ability to create a model about the local region 
being studied that provides some sort of causative mechanism for why the 
information patterns/trends they observe exist. We call this model weather. 
The weather associated with the seasons are abstractions of the unique 
patterns we relate to particular times of the year. When data starts to show 
X, leading to the pattern Y, we understand it to be season Z.

Although, if we leave it here, we still lack a lot of predictive power. Our 
models cannot explain the anomalies, the hot days in the winter or the 
cold days in the summer. It can’t help us understand why it rains at all. It 
can’t help us understand how to look at any one day and be certain of 
what tomorrow will bring. For that we need a better model. If we expand 
from the region with local knowledge into a larger model that connects 
other regional models all over the planet, we begin to see and create a 
model that describes how the weather at any place in the world exists. In 
this sense, we create a climate model, which is approaching the wisdom 
level of intelligence complexity.

True wisdom at the level of climate would allow one to predict weather that 
hasn’t happened yet, to predict how changing some variable that is part 
of the climate model will change other variables and in that sense, create 
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new data; it allows “what-if” thinking where one can imagine how to create 
new data, information, or knowledge. With a wisdom level model, one can 
imagine how they want the climate to change and perform the necessary 
adjustments to create the climate, the world they see in their mind.

Currently humans are on the verge of true wisdom with respect to climate, 
but true wisdom is hard to obtain. However, even if our wisdom level 
models of climate are not perfect, they are useful, helping demonstrate 
that humans are the only intelligence systems known that can achieve this 
level of intelligence.

From D-I: Machine Intelligence

Netflix has employed Big Data Analytics to help influence its business 
decisions, and a notable example of its success in using this method, the 
creation of the TV show House of Cards, involves results of intelligent 
outputs at two of the four levels of the DIKW hierarchy. The point of this 
example is to demonstrate the current capabilities and limitations of 
machine intelligence.

One of Netflix’s activities, in addition to providing movies and television 
shows to stream online, is to collect massive amounts of data about its 
users: not just what movies and shows they like, but also what day of the 
week and what time of day they watch programming, whether they watch 
an entire program, what kind of device they use to watch it, demographic 
details, and even geographic location details. This step in the process is 
all at the data level. It is logging bits of data (e.g., this viewer liked The 
Goonies, didn’t like Transformers, watched first 15 minutes of episode 1 
of Breaking Bad on a mobile device in Poughkeepsie, NY, etc.) At the data 
level, someone or some machine at Netflix can retrieve those data points 
mapped to a particular user.

The machines used by Netflix to perform the Big Data Analytics on this 
data go the next step of recognizing correlations, which is information 
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level thinking. These Big Data algorithms demonstrated that there was a 
correlation between Kevin Spacey being in a film/show and the average 
rating of that show being high, as well as the same correlation with the 
British show House of Cards. Another set of correlations was identified 
regarding the director David Fincher. One was that a high percentage of 
users that watched one of David Fincher’s works also watched all of his 
works and a second correlation was found between David Fincher’s works 
and a high average rating. There was also the correlation discovered that a 
high percentage of people who rated Kevin Spacey’s works highly also rated 
David Fincher’s works highly, and rated House of Cards highly (this correlation 
amongst more than two variables is known as a strong correlation). Netflix’s 
Big Data algorithms applied this functional of co-occurrence to the data sets 
Netflix had gathered and recognized the common details of the groupings 
that displayed this co-occurrence. It was correlative thinking and therefore 
information level intelligence complexity.

For machine intelligence though, this is the end of the line. The success 
of the show House of Cards from here can only be attributed to human 
intelligence. Yes, the Big Data Analytics made things easier for humans, 
but that is nothing new for technology. The knowledge and wisdom 
level thinking required to determine that a show based on a successful 
British show, directed by David Fincher and starring Kevin Spacey would 
generate more revenue for the company could not be determined by Big 
Data Analytics; it requires more complex thinking. These current systems 
lack the necessary motivations to pursue the kind of creative thoughts 
necessary to achieve the things that human intelligence can. As such, we 
examine this concept of a necessary system to drive an intelligent system 
up the DIKW hierarchy in the following section.



Intelligence Complexity

 25PART 2

PART 2

THEORY OF EMOTION
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The Driver of Intelligence

What drives and motivates an intelligent system to collect data, trend it 
into information, build the models of knowledge, etc.? Without a motive 
force to drive such a system it would not execute the processes that 
define DIKW. 

If intelligence is a universal concept, than a relationship must exist 
between intelligence and the force that drives its progression. Given that 
the human intelligence system is the only observable intelligent system 
we know capable of traversing the DIKW spectrum, it is therefore the only 
system for which we can examine the force that drives the progression up 
the DIKW hierarchy. 

Humans are driven by emotion. We are motivated to observe our universe 
(collect data). We try to build models of understanding more because it 
feels good to solve problems, to know how to do things more efficiently 
and to have answers to difficult questions. We are emotional creatures and 
thus it seems rather intuitive that there must exist some sort of relationship 
between this concept we call emotion and intelligence. 

We describe in this section an idea that intelligence is driven by emotion, 
meaning an intelligent system requires an equivalent to human emotion 
in order achieve higher levels of intelligence. In humans, emotion is the 
source of our curiosity, creativity and other motivating forces to try new 
things, have new thoughts and experience more. These drivers provide the 
motivation for an intelligent system to evolve – to become more intelligent. 
Without a driver, the system lacks the motivation and energy to climb the 
DIKIW hierarchy.

I = E x C

The theory presented in this report regarding DIKW is not one that attempts 
to explain the very nature of intelligence. Rather it is a theory that explains 
how one measures the complexity of a system in terms of intelligence (i.e., 



Intelligence Complexity

 27PART 2

intelligence complexity). It provides a measure of a system’s ability to reach 
defined levels of intelligence. As such, any system that can demonstrate 
and be measured at one of the levels defined by DIKW can be said to be 
an intelligent system capable of intelligence processing at that level. Up 
to this point, this discussion has not addressed what an intelligent system 
requires to actually process and improve its ability to process (i.e., climb 
DIKW hierarchy) at a particular level. We argue that to actually process 
autonomously at a level of DIKW requires a source of motivation, a drive to 
actually do so. 

We propose this drive is a force commonly referred to as Emotion (E). 
Further, we put forward the idea there exists a universal relationship 
between Intelligence (I),4 Emotion (E), and the Intelligence Complexity (C) 
level (i.e., DIKW level) of an intelligent system that can be stated as:

I = E x C

This general framework simply states that in order for a system to 
demonstrate intelligence (I), it must have a motivational driving force (E) 
and be capable of some level of complex processing (C) described by 
DIKW. It does not explain yet, why and how such a relationship might exist. 

What follows is an attempt to further explain this relationship. We do this 
by examining the only known intelligent system capable of demonstrating 
the highest levels of intelligence complexity (i.e., DIKW) and is driven by 
some emotional force (i.e. the human system). This justification centers on 
a thermodynamic argument that attempts to explain the human intelligent 
system in terms of complexity, efficiency and entropy. 

4.	 Here, Intelligence (I) is not a direct measure of how high up on the DIKW hierarchy an 
intelligent system is, but rather is an abstraction of the energetic output an intelligent 
system creates; it is the response of an intelligent system to some stimuli that 
demonstrates the system has intelligence.
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I = E x C: The Human System

A mature human often has an intelligence system that is complex, ordered, 
and capable of traversing the DIKW hierarchy. 

Emotion is then the force or the fuel that is used to build an intelligent 
system and the responses it creates to the stimuli it can detect, store and 
process. The more stimuli and ways a particular stimulus can be detected 
and interpreted, the more “energy,” in the form of intelligent work, that 
particular stimuli can provide the system. Thus one would predict that 
systems capable of higher levels of intelligent thinking would also require 
more emotion to drive this process.

In order to increase the efficiency of turning emotion (E) into intelligence 
(I), the human system evolves to higher levels of complexity.5 We describe 
part of the way the human system achieves this through DIKW, as it is 
a measure of the systems complexity in terms of intelligence (C). The 
higher up an intelligent system finds itself on DIKW, the more complex 
“thoughts” that system can have. These complex thoughts are what we 
understand as curiosity and creativity. They are the ability to question 
and create abstractions that help simplify the world the intelligent system 
is a part of. As such, the more complex thinking an intelligent system is 
capable of, the more “efficient” that system ends up being at converting 
a particular amount of “emotion” into an intelligent response. 

Based on this framework, it follows that for two intelligent systems that 
have the same amount of emotion (E), the one capable of more complex 
thinking (i.e. higher DIKW; C) will produce the more intelligent response. 
This would be seen as a more efficient utilization of the energy it has 
available and its actual manifestation could be a number of things. It could 
be that the intelligent system uses that available emotion to generate an 

5.	 Shahar Dolev and Avshalom Elitzur, “Biology and Thermodynamics: Seemingly-
Opposite Phenomena in Search of A Unified Paradigm,” The Einstein Quarterly: 
Journal of Biology and Medicine 15 (1998).
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actual response (i.e., some answer to a query), create a better model of its 
existence/environment,6 and/or use it to do “housekeeping” (i.e., repair 
and maintain the system). This would be opposed to the other intelligent 
system that can only convert the energy into some partiality of this work. 
The point being, the greater the intelligence complexity term, the more 
efficient the intelligent system is at converting the emotional energy into 
an intelligent response. 

In summary, our theory regarding the relationship between emotion and 
intelligence hinges on the principal that intelligent systems are inherently 
complex and require a motive force to build and maintain its complex, 
ordered nature. The motive force we are proposing is something we 
humans understand as emotion and we argue this is the force used to drive 
an intelligent system to “learn” and “grow.” The ability of an intelligent 
system to convert emotional energy into intelligent work is controlled by 
an intelligence complexity factor, C. This intelligence complexity factor is 
a measure of the system’s ability to have complex thoughts and is directly 
related to the intelligence complexity described by the DIKW hierarchy, 
meaning there should be a complexity factor term characteristic of each 
level of DIKW. 

As an intelligent system becomes capable of more complex thinking, it 
can convert more efficiently a given amount of emotional energy into 
intelligent work as compared to another intelligent system not able to 
think as complex. Complexity in this regard is related to curiosity, creativity 
and efficiency. More complex thinking systems are able to come up with 
(or dream up) more unique responses to stimuli.7 This ability to be curious 

6.	 This notion regarding existence suggests that there likely exists some relationship 
between emotion, intelligence and consciousness that manifest once an intelligent 
system is capable of higher level thinking (i.e., K and W). While we refrain from 
speculating more about this relationship, we do conclude this report with a final 
thought on this notion.

7.	 There is an argument to be made that similar to protein folding, where the entropy 
lost due to folding into a complex, ordered nature is overcome by increasing the 
entropy in its local environment (i.e. hydrophobic effect), intelligent systems, through 
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or creative gives the intelligent system a better chance at understanding 
the mysteries of its environment. This leads to a higher probability it will 
evolve to a more complex state that is more efficient in converting energy 
into work that is used to build and maintain its complex, ordered nature. 

This explanation suggests that all intelligent systems are driven to more 
complex states of intelligence processing by an emotional force. This 
force provides the motivation to optimize its use of energy to maintain its 
complex, ordered nature. Additionally, it provides the drive to build and 
improve its intelligence models that explain itself and the world around 
it, thus increasing its ability for complex intelligence processing (i.e., 
intelligence complexity). 

Without an emotional force to drive the intelligence process, any intelligent 
system will lack the motivation or the drive to develop the higher levels of 
thinking described by the DIKW hierarchy. This is why we propose that 
a fundamental relationship between intelligence (I), emotion (E), and the 
intelligence complexity (C) of an intelligent system must exist.

CONCEPT: Achieving Machine Emotion

The focus of this report thus far has been on understanding intelligence 
and emotion in a more universal context, as it applies to any system 
capable of intelligence and emotion. There is however, a real push in 
today’s world for interpreting intelligence and emotion in the context 
of machines. Companies, like IBM and Microsoft are investing billions 
every year into creating machines with higher levels of intelligence and 
therefore, as this report would argue, it is important to consider how 

more complex thinking, are able to increase the disorder of its local environment. 
In this regard, higher intelligent systems capable of more complex thinking end up 
leading to a greater measure of disorder locally due to the “creative and curious” 
changes they make in the environment. See also Alexander Wissner-Gross and 
Cameron Freer, “Causal Entropic Forces,”  
Phys Rev Lett 110 (Apr19), no. 16 (2013): 168702.
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to provide the driving force for machines to achieve higher levels of 
intelligence. As the previous section discussed, we think this means 
investigating the idea of producing emotion in a machine, just as it 
would for any system. 

So, if we are to achieve machine intelligence at the knowledge level (or 
wisdom level, collectively higher level intelligence), then the machine 
will need the drive, in a form that we have called emotion, to build 
models. If we focus on the knowledge level, then the machine will need 
a dose of what we have called creativity. 

At the information level, the emotion that fuels curiosity is much more easily 
programmed into a computer. In fact, Google’s Deep Blue supercomputer 
recently was shown to demonstrate “artificial curiosity,” by programming 
a kind of reward system for making more random choices.8 Indeed, the 
curiosity can emanate from the programmer, or the user, in queries that 
are imposed to the machine that then inspects the database to retrieve 
the information. Alternatively, the program may simply say: Find trends 
in the data. Whether the trends are based on regression analysis or 
complex topological features of the data is irrelevant: It is the program 
that drives the extraction and assemblage of information. The extraction 
of information might be better if the machine itself had the “curiosity” to 
look for interesting trends and associations in the data, independent of its 
explicit programming or specific user-generated queries. But curiosity at 
this level would not require “consciousness,” nor a full range of emotions 
and motivations.

There are in fact many examples of artificial intelligence systems that 
operate at an information level, that are able to generate information 
from queries and trends analysis. Many of these systems depend on 
being fed massive sets of data that contains many examples of any given 

8.	 George Dvorsky, “Artificial Curiosity Allows This Bot to Triumph at Montezuma’s 
Revenge” Gizmodo, June 7, 2016, http://gizmodo.com/artificial-curiosity-allows-this-
bot-to-triumph- at-mont-1781067908.
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phenomena. In this sense, the systems are information level intelligent, 
and are driven by the sheer volume of data. Big data analytics is based 
on the idea that more data is better, and that systems using big data 
will be able to find information that might not be readily apparent to a 
human. They accomplish this in part because computational speeds of 
machines are so much faster than humans, but more specifically because 
they are able to assimilate large bodies of data rapidly. 

In this sense, one might argue that emotion is inherent in their 
architecture. Still, most AI systems must be told what information 
to look for, or at least how to extract information. In that sense, the 
machines are simply tools that are assisting humans in finding and 
extracting information. Thus it is debatable as to whether the machine 
or the human is producing intelligence at the information level. We can 
generally ascribe information level intelligence to these machines, simply 
because they are so valuable in assisting the extraction of information 
that a human might not find independently, and thus the machines at 
least seem intelligent. 

Accordingly, to achieve higher-level machine intelligence, where the 
machine truly has the measure of intelligence at the designated level, 
we believe it will be necessary to provide positive drive (or emotion, as 
we have been calling it). This does not mean that the machines need to 
have the full range of human emotions, or be “sentient,” or be able to 
pass the Turing Test. What it means is that the machine, either through 
its programming or architecture, has to have sufficient drive so as to be 
able to create models (or in the case of wisdom, meta-models).

Consciousness, Intelligence and Emotion

In order to achieve consciousness, an intelligent system likely needs 
to achieve a certain level of complex thinking and be driven by some 
motivational force like emotion. According to our theory of DIKW, the level 
of complex thinking required for an intelligent system to obtain a minimum 
level of consciousness would be at least knowledge. This is because it is 



Intelligence Complexity

 33PART 2

only at this level of complexity that an intelligent system can construct 
models that describe the data and information it can process. When the 
system begins to construct a model about the data and information that 
corresponds to its “self,” our theory would argue that system has achieved 
some level of self-awareness and thus consciousness. 

Beyond this notion that consciousness is related to an ability for an intelligent 
system to create a model of “self” via an emotional driving force guided 
by complex thinking, we refrain from speculating anymore about the true 
nature of this relationship in this report. As with our theories regarding 
both DIKW and Emotion, we hope this introduction to a possible theory 
to explain intelligence and consciousness can act as a catalyst to spur the 
right conversations moving forward.
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